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Abstract

Suppose that a decision maker (DM) uses features (namely, measurable

characteristics) to describe alternatives. An analyst cannot observe directly

which features of an alternative are considered by a DM, how the DM evalu-

ates them, and which procedure the DM uses to make a choice. To what extent

do choices reveal which features matter for the DM? We propose a “Pareto

dominance” approach: the only assumption we make on the DM’s decision

process is that the DM does not make choices that are Pareto dominated in

the set of relevant features. In this framework, we characterise exactly which

(collections of) pairs of a choice observation and a feasible set are informative

about the features that the DM uses in her internal representation of alterna-

tives.

JEL codes: D81, D83, D91

Keywords: revealed preferences, choice, characteristics, Pareto optimality.

1 Introduction

1.1 Motivation

Suppose that a decision maker (DM) uses features (namely, measurable characteris-
tics) to describe alternatives. For instance, a consumer product can be described as
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a set of technical and economic characteristics and a political party in terms of its
position on several issues. The number of conceivable features is typically large,
and it is psychologically unrealistic to take for granted that the DM considers all
of them. In fact, the subset of relevant features used in the DM’s internal repre-
sentation of the alternatives may be a very small proportion (as in Gabaix’s [16]
“sparsity” approach1).

Our DM focuses on a set of relevant features and uses them in some unob-
served decision procedure to make a choice. What can we learn about the relevant
features from the DM’s choices? This identification question is important to under-
stand the motivations behind consumption, investment, political decisions, and
other activities. Crucially, we would like to obtain the identification with minimal
assumptions on the aggregation/decision procedure used by the DM.

To sketch the idea we propose, suppose that there are only two possible fea-
tures, representing the funding that political parties pledge for each of two issues,
say the defence and the international aid budgets.2 A platform for a party can then
be completely described as a pair (x1, x2) of real numbers, measuring increases to
defence and aid expenditure, respectively. Also, assume for the time being that
each voter maximises some unknown linear function of the features (we will sig-
nificantly relax this later). Three parties A, B and C propose, respectively, the fol-
lowing platforms:

xA = (5, 0)

xB = (4, 4)

xC = (0, 5) .

Can we tell which features are relevant for the supporters of each party? Even
without making any assumption on whether either feature (if relevant) is valued
positively or negatively, a vote for B entails that the voter considers both the de-
fence and the aid budget. This is because if only defence had been relevant, then
the voter would have favoured A if an increase of the defence budget was a posi-
tive feature, since xA maximises the feature. And the voter would have favoured C

1Since “out of the thousands of variables that might be relevant, [the DM] takes into account
only a few that are important enough to significantly change his decision.”

2The example aims at simplicity rather than realism. As noted, we have in mind situations with
a large number of features.
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if that increase was a negative feature, since xC minimises the feature. A symmetric
reasoning excludes the case where only the aid budget is relevant.

On the other hand, a vote for A or for C does not help at all in identifying the
relevant features. Both xA and xC can be seen as maximisers on the feasible set
X =

{
xA, xB, xC} of some non-trivial weighted sum of any set of features, for some

appropriate choice of weights. Observe that this indeterminacy also holds when a
platform is chosen out of the reduced feasible set

{
xA, xB}.

What this example highlights is that some choices from some feasible sets are
informative about which features are relevant for the DM, while other choices from
the same feasible set or the same choices from subsets of the feasible sets are not.
The aim of this paper is to develop the above observations into a general theory.
We will fully characterise: (i) the structure of the set of possible relevant features;
and (ii) which kind of pairs (X, x) of a feasible set and an observed (or assumed
known) choice do reveal, partially or fully, the relevant features, under relatively
weak assumptions on the DM’s decision process.

1.2 The model

In our general analysis, a DM is simply viewed as an entity that takes features
as an input to output a choice. We do not use preferences or other psychological
variables as a primitive. Our only assumptions are that each feature counts either
positively or negatively for the DM, and the following behavioural principle:

Admissibility: An alternative x is not chosen by the DM if there is a different
alternative y that has weakly more of all positive relevant features, and weakly
less of all negative relevant features.

In other words, we do not specify explicitly a set of admissible aggregation or
decision procedures. Instead, we just assume (strong) Pareto optimal behaviour
with respect to the relevant features, with the twist that neither the directions of
improvement nor the dimensions in which Pareto optimality operates are known
to the observer. This approach is in broad conceptual analogy with the “collective”
multi-person household model initiated by Chiappori [12] and Apps and Rees [3],
which reduces the complex problem of modelling a decision unit guided by several
utility functions to the single requirement of Pareto optimality. In this analogy, the
utility functions are reinterpreted intra-personally, as the motivations correspond-
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ing to the features. Also, recall that even when all features are considered and they
are all positive, strongly Pareto optimal points would not be characterised by the
maximisation of a linear objective. As recently shown by Che et al. [10], they may
be rather associated with certain sequential maximisation or sequential Nash bar-
gaining procedures, which again could be reinterpreted in an intrapersonal context
as “behavioural” procedures.3 In the extension of our model to multiple obser-
vations (Section 7), the admissibility assumption is compatible with violations of
standard consistency restriction like WARP and SARP.4

We can now sharpen our identification question as follows. The type of the DM
is the subset I of features that are relevant. Type I is possible at x if, for some hy-
pothesis on the sign that the DM attaches to the features, we cannot find any other
feasible alternative that has weakly more of the positive features in I and weakly
less of the negative features in I. With this terminology, our question becomes
whether, given a choice x, we can exclude at least some type. If so, then the type
is partially identified. If we can actually exclude all types except one, then the type
is fully identified.5 These concepts are illustrated in Figure 1, which will be repeat-
edly used in the paper. The feasible set is the convex set in blue. The only possible
type at x considers both features (with feature 2 a good and feature 1 a bad). At
w, which is “sub-optimal” in the whole feasible set, the type that only consider
feature 1 as a positive is possible (and it is the only possible type). This type re-
mains possible at y, but now an additional type, which considers both features (as
positives), becomes possible. Since feature 2 can be both increased and decreased,
type {2} can surely improve and thus it is not possible. Finally, at z, all types are
possible (considering features as negatives).

3In this vein, see e.g. De Clippel and Eliaz [13] for an intrapersonal bargaining model that
explains behavioral “anomalies.”

4Because our framework is quite general and can accommodate various specific decision mod-
els, we must remain agnostic on the interesting issue of which cognitive factor (such as attention or
preference) determines the neglect of a feature.

5In some contexts it may be obvious whether some features (e.g., the price of a commodity)
are positive or negative. As will be apparent, our analysis can be straightforwardly adapted to take
into account these constraints (through restrictions on the object later called “evaluation function”),
which facilitate identification.
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Figure 1: Possibility and identification: the type is fully identified at x and w, only
partially identified at y, and not identified at z

1.3 The structure of possibility

We begin by investigating the general structure of the set of possible types. For
example, suppose that the features are the expenditures on defence, international
aid and health. Consider the following questions:

• Is there a conceivable observation (namely, a pair (X, x)) showing that the
possible types of voter are exactly the following two: the one that considers
only defence expenditure, and the one that considers expenditures on each
one of the budgets?

• Suppose that an observation (X, x) shows that the type that considers only
defence expenditure and the type that considers only health expenditures are
possible. What can we conclude about the possibility of the other types?

We fully characterise the sets of possible types: given an observation, the set of
types is closed under union; and conversely any set of types that is closed under
union can be the set of possible types for some observation. This answers the ques-
tions above, and all similar ones.
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1.4 The richness conditions for identification.

Next, we derive identification conditions. To understand the core insight, return
to the initial example. We have seen that a choice between any pair of alterna-
tives, such as xB from X =

{
xA, xB}, could have been made by any type in the

linear maximisation case, and this remains true with the more general definitions.6

A choice like xB is completely uninformative because there is only one feasible
kind of “trade-off” between features when moving away from xB: it is only pos-
sible to have a larger defence expenditure and a smaller aid expenditure, but not
vice-versa. This is not enough to discriminate between types. A specific form of
richness in feasible trade-offs is needed. Identifiability is equivalent to ensuring a
sufficient variety of feasible trade-offs between features when moving away from
the choice. For example, in X =

{
xA, xB, xC} changing the choice from xB to xA

((4, 4) → (5, 0)) would entail diminishing expenditure on aid while increasing that
on defence, while changing it from xB to xC ((4, 4) → (0, 5)) would entail the op-
posite trade-off. The feasible set at xB is “rich” and ensures identification. On the
other hand, if the choice was xA, changing it to xB ((5, 0) → (4, 4)) and changing
it to xC ((5, 0) → (0, 5)) would entail the same kind of trade-off. The feasible set at
xA is not rich, and there is no identification.

While the finite case provides the intuition, the bulk of our analysis focuses on
a general convex feasible set X.7 In this case the richness requirement for partial
identification can be sharply characterised in terms of the geometry of the feasible
set around the observed choice, with two equivalent conditions.

The orthant condition says that the set of vectors of feasible directions towards
other feasible points from the choice point x is not contained in an orthant.

The non-extremeness condition says that there is a selection of features such that x
is not an “extreme” point in X , when X is regarded only in terms of those features.

It might appear at first sight that whenever a feasible set X looks sufficiently
“like a segment” at the choice point x, i.e. the alternatives are sufficiently “sparse”
around x, then (X, x) is not informative because there are few feasible directions at

6Indeed, xB is admissible by assuming that the first feature is negative and is the only relevant
one, making type {1} possible; or that the second feature is positive and is the only relevant one,
making type {2} possible; or by making both the previous assumptions on positivity/negativity,
with both features being relevant, making type {1, 2} possible.

7E.g., in the initial political example, imagine that through a questionnaire the voter can choose
out of all combinations of the platforms.
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x. But this intuition is a trap: it is important to understand that the richness condi-
tion does not amount to placing bounds on a measure of sparsity around x. There
are feasible sets that are arbitrarily sparse around the choice and yet still satisfy the
richness condition.8 This underscores the important point that in general both the
shape and the orientation of the feasible set around x matter for identification.

The conditions for full identification are significantly more nuanced but, broadly
speaking, they are of the same kind as the orthant condition for partial identifica-
tion. The main change is that a “contains an orthant” type of requirement replaces
the “not contained in an orthant” one. Interestingly, the dimensionality of the fea-
sible set, which is not a significant aspect for partial identification, now turns out
to be important. A corollary of our results provides answers to questions such as:
“There are 100 possible features. Is there a type that we can in principle fully iden-
tify by observing the DM’s choice from a feasible set that has dimension 99? What
about with one of dimension 98?”. (What do you think?).

When the convex feasible set X can specifically be obtained as the set of convex
combinations of a finite number of points (i.e. a polytope), all possible types are
“linear” (i.e., they maximise a linear objective function). As a consequence, a lin-
ear programming approach can be taken and the identifiability conditions can be
expressed in a more operational way in terms of the structure of certain matrices.
For the initial case of a finite number of points (without convex combinations), the
conditions are essentially analogous.

1.5 Multiple observations

In practice, the analyst may observe more than a single choice event. Therefore,
we extend our theory to the case where the data consist of multiple choice occa-
sions. It turns out that most of the heavy-lifting is done by the single-observation
analysis: our arguments can be easily adapted to the multi-observation environ-
ment. As we shall see, multiple observations not only increase, as expected, the
identification power; but they also change in more subtle ways the nature of what

8For example, let Xε be the convex hull of xA, xB and yε = (5 + ε,−ε), where ε is a small positive
number. For any ε, any type that cares only about defence is not possible at xA (which is dominated
by yε or by xB according to whether it is a positive or a negative feature), hence there is partial
identification. Yet yε converges to xA as ε goes to zero and Xε can be made arbitrarily similar to the
segment between xA and xB.
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can be identified. Loosely speaking, the way identification power is increased is by
enriching the feasible directions by union. In other words, the relevant object for
the orthant inclusion/exclusion conditions described before becomes the union of
the sets of feasible directions.

Beside its general value in solving the theoretical identifiability problem, we
hope that the present work can be of use in other specific ways. For example, con-
sider the design of experiments, political polls, market surveys and recommenda-
tion algorithms.9 In all these cases the designer controls or influences the feasible
set from which DMs choose. Our results are apt to guide the designer in tailoring
the set of feasible choices to increase its informativeness.

2 Framework and definitions

Let F = {1, . . . , N} be the set of possible features. A DM chooses from a set X ⊆ RN

of feasible alternatives. An alternative x = (x1, ..., xN) ∈ X is described by the
amounts xi, for all features i ∈ F, of that alternative.10 Unless otherwise stated, the
feasible set X is a nonempty closed bounded convex set of RN. In what follows we
will denote the boundary of X by ∂X, the origin by 0, the vectors of ones by 1, and
the unit vector with ith component equal to one by 1i.

We now introduce our core behavioural assumption.

Definition 1. An evaluation function is a function e : F → {−1, 0, 1} such that e (i) ̸=
0 for some i ∈ F.

Definition 2. A point x ∈ X is e-admissible if

(∀i : e (i) yi ≥ e (i) xi)& (∃i : e (i) yi > e (i) xi) =⇒ y /∈ X.

The function e is interpreted as indicating whether or not a feature is ignored;
and if not, whether it is valued positively or negatively. We have inbuilt in the
definition the obvious assumption that not all features are ignored.

The DM’s choice x∗ ∈ ∂X is observed. Our behavioural assumption is that there
exists an (unobserved) evaluation function e such that the choice x∗ is e-admissible.

9On social media platforms algorithms learn what “features” consumers are interested in by
presenting users with different “menus”.

10Here, F is interpreted as the set of all conceivable features that could reasonably describe an
alternative. Hence, the DM by assumption cannot use features that are not in F.
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A type is a subset I ⊆ F. When the type is a singleton we call it elementary.

Definition 3. A type I ⊆ F is possible at x∗ ∈ X if there exists an evaluation function
e such that:

(i) e (i) ̸= 0 if and only if i ∈ I;
(ii) x∗ is e-admissible.
In this case, we also say that (e, I) is possible at x∗.

Let ⟨., .⟩ denote the inner product operation. We say that a type I is linear at x∗

if there exists an a ∈ RN such that ai ̸= 0 if and only if i ∈ I, and ⟨a, x∗⟩ ≥ ⟨a, x⟩ for
all x ∈ X. In other words, a linear type at x∗ is such that X is supported at x∗ by
a hyperplane whose non-zero coefficients correspond exactly with the features in
I. In Figure 1, type {1} is linear at y (maximising a linear function with direction
(1, 0)) but type {1, 2} is not, since no hyperplane with coefficients that are all non-
zero supports the feasible set at y. The following Lemma, which will be repeatedly
used later on, clarifies the relationship between linear and possible types:11

Lemma 1. (i) If type I is linear at x∗, then I is possible at x∗. (ii) If type I is possible at
x∗ ∈ X, then there exists a type J ⊆ I which is linear at x∗.

Point y in Figure 1 demonstrates that the set of linear types can be a strict subset
of the set of possible types.

Definition 4. The type is:

• partially identified at x∗ if some type is possible at x∗ and there exists a type
that is not possible at x∗.

• fully identified at x∗ if there exists exactly one type that is possible at x∗.

• not identified at x∗ if all types are possible at x∗.

3 The structure of possibility

We first show that, when the feasible set is convex, any type can be made possi-
ble by some observation on the boundary, and conversely any observation on the
boundary makes some type possible.

11All proofs are relegated to Appendix A.
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Proposition 1. Let X be a convex compact subset of RN. Then:
(i) For any type I there exists x ∈ ∂X such that I is possible at x.
(ii) For any x ∈ ∂X there exists a type I that is possible at x.

The proof for part (i) is based on linear optimisation “discovering” the types.
As noted previously, however, such a method will not necessarily discover all the
types that are possible at each given observation using that same observation: it
may be necessary to use a different observation. The content of the result from
this perspective is that such a different observation always exists. To illustrate this
fact, return once again to Figure 1: here, y does not maximise any linear objective
in the direction (1, 1) but there is another feasible point where this direction is
maximised. Convexity is essential: it is easy to construct a non-convex set with
observations at which no type is possible.

Next, we deal with the question of which sets of possible types can in principle
be inferred from the observation. For example, does a set of possible types have an
interval structure, in the sense that if I ⊂ J ⊂ K ⊆ F and types I and K are possible
at some x ∈ X, then J must also be possible? The next example shows that this is
not the case.

Example 1. (refer to Figure 2). Consider

X = conv ((0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1)) ,

and let x∗ =
(

1
2 , 1

2 , 0
)

. Type {1, 2, 3} is possible at x∗ with e = (1, 1,−1). With
e = (0, 0,−1), type {3} is also possible at x∗. However type {1, 3} is not possible
at x∗. It is is clear that this type can improve by moving from x∗ along the pyramid
base either toward the origin or toward the point with the highest first coordinate,
(1, 0, 0), according to whether the first feature counts as a negative or as a positive,
respectively.

The main result of this section is a characterisation of the set of possible types.
It shows that a collection of types is a collection of possible types for some pair
(X, x∗) of feasible set and observation if, and only if, the collection is closed under
union.

Theorem 1. (i) For all X ⊆ RN and x∗ ∈ X, the set of possible types at x∗ is closed under
union. (ii) For any nonempty collection I ⊆ 2F of types that is closed under union, there
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Figure 2: Figure for Example 1: types {3} and {1, 2, 3} are possible at x∗, while the
“intermediate” type {1, 3} is not.

exists a convex polytope X ⊆ RN and x∗ ∈ X such that the set of possible types at x∗ is
I .

4 Partial identification

Partial identification is important in many applications. Suppose for example that
the features of a stock are its past returns. In such a financial context, it is useful
information that the DM does not look beyond the past two years of history, even if
we cannot tell whether both past years are considered, only one of them, or none.12

4.1 Characterisation

In this section we characterise partial identifiability from several angles. For our
main result, we introduce a new definition:

Definition 5. A point x ∈ X is I-extreme, for I ⊆ F, if there exist no y, z ∈ X \ {x}
and α ∈ (0, 1) such that yi ̸= zi and xi = αyi + (1 − α) zi, for all i ∈ I.

12Here are some other examples of relevant partial identification: a policy maker ignores
some specific subgroup in society; jurors include race as relevant feature in their judgement; in-
vestors/consumers take into account the ethical dimension of a product, like the conditions of the
workforce and environmental damage, and in general the ESG score of a company.
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Thus, a point is I-extreme if it is extreme in the projection of X on the subspace
RI ⊆ RN. For example, in Figure 1, z is I-extreme for all I ⊆ F, while x is {1, 2}-
extreme (or simply extreme) but neither {1}-extreme nor {2}-extreme.

Appendix B contains some standard definitions and facts from convex analy-
sis. Let C

(
v1, ..., vN) ⊆ RN denote the convex cone generated by a set of vectors{

v1, ..., vN}, that is, x ∈ C
(
v1, ..., vN) if and only if there exist numbers αi ≥ 0 such

that x = ∑i αivi. Note this cone is closed. An orthant of RN is a cone C
(
v1, ..., vN)

for which, for all i, vi
j ∈ {−1, 1} if j = i and vi

j = 0 if j ̸= i.
The following result shows that partial identifiability is equivalent to the fea-

sible directions at the observed choice not being contained in an orthant, and that
this is in turn equivalent to the observed choice not being extreme for all types.

Theorem 2. The following statements are equivalent, for x∗ ∈ ∂X:

(i) The type is partially identified at x∗.

(ii) The cone of feasible directions13 FX (x∗) is not contained in any orthant
of RN.

(iii) There exists an elementary type {i} ⊆ F such that x∗ is not {i}-extreme.

Condition (ii) captures two types of intuition regarding identifiability. This first is
related to the internal structure -that is, independent of the coordinate system- of
the feasible set at the observed point, while the second is related to the orientation
of the feasible set in the coordinate space. Let’s examine the first intuition. When
X forms a “sharper” shape around x∗, it means that there are fewer feasible direc-
tions in which to move. As a consequence it is harder to improve, and then more
types tend to become possible, undermining identification. Conversely, if X forms
a “fatter” shape around x∗, so that there are more feasible directions in which to
move, more types will become excluded, favouring identification. To make this ar-
gument formally, we express the idea of fatness through the relationship between
the tangent cone TX (x∗) and its dual cone −T0

X (x∗), and say that X is fat at x∗ ∈ X
if TX (x∗) ⊈ −T0

X (x∗). If there exists x ∈ TX (x∗) for which x /∈ −T0
X (x∗), it means

that there exists a y ∈ TX (x∗) which forms an obtuse angle with x. In other, words,

13Definitions of various cones are in Appendix B.
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Figure 3: Sharpness with partial identification

there is at least a direction in which the set TX (x∗) is fat (while it can be sharp in
other directions).14

Corollary 1. The type is partially identified at any x∗ at which X is fat.

But fatness is not necessary: even a sharp feasible set can be oriented in the
right way for partial identification. See Figure 3, where type {2} is not possible.

Therefore, shape can only be part of the story, and our conditions do not simply
amount to bounds on the sparsity of alternatives around the choice. The orthant
condition says that for identifiability the feasible directions vectors must straddle
more than one orthant. This condition is thus in terms of a relation between a
measure of sparsity around x∗ and the coordinate system. While the requirement
is favoured by fatter shapes around x∗, for a given geometric shape of the feasible
set X, identification may depend on how X is oriented in the coordinate space.
Figure 4 illustrates the identifying effect of rotation.

Condition (iii) can be better understood when related to the standard notions of
extremeness and exposure. Recall that every exposed point is extreme, while the
opposite does not necessarily hold (e.g., this is the case for points x and y in Figure
1). Extreme but not exposed points arise naturally in economic contexts, whenever
a tradeoff between two features is linear on a range and nonlinear in a subsequent
range. Think for example of nonlinear discounting beyond a threshold quantity,

14Note that the two-dimensional cases may be slightly misleading in this respect. In two dimen-
sions, either TX (x∗) ⊆ −T0

X (x∗) or −T0
X (x∗) ⊆ TX (x∗), that is, either the set of feasible directions

is unambiguously non-obtuse or it is unambiguously non-acute. But in higher dimensions, a cone
may be thin in some directions and fat in others, so that neither of the dual containment relations
holds.
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Figure 4: Identifying effect of rotation: the type is not identified at x in the feasible
set on the left, but it becomes partially identified at x after the rotation on the right,
where the horizontal type is not possible.

or of congestion or pollution costs starting to rise nonlinearly in the proximity of
urban centres.

Corollary 2. The type is partially identified at any x∗ ∈ ∂X that is not exposed.

Since any exposed point is extreme, an immediate implication of Corollary 2 is
that non-extremeness is a sufficient condition for partial identification. However,
it is too strong to be also necessary. Theorem 2 fills the gap by devising a less
stringent form of non-extremeness that is both necessary and sufficient for partial
identification.15

Finally, the proof has also shown:

Corollary 3. The type is partially identified at x∗ if and only if there exists an elementary
type {i} ⊆ F that is not possible at x∗.

This is interesting in two respects. First, since an elementary type is obviously
linear, we see that partial identification is equivalent to the exclusion of some linear
type. In other words, nothing would change in the statement of Theorem 2 if we
had considered only a DM that is a linear maximiser. This will not hold for full

15Note that the converse of the Corollary is not true. When X is the sphere S =
{

x |∑i x2
i ≤ 1

}
,

the type is fully identified at any exposed point (i.e. any point on the boundary). This will be
implied by our later results on full identification.
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identification. Second, the “only if” direction yields a simple test for (the lack of)
partial identification, reducing from 2N − 1 to N the number of types to check in
order to conclude that the type is not identified. In Section 6 we provide a concrete
way to perform this check in terms of the properties of certain matrices, for the
case where X is a convex polytope.

5 Full Identification

In this section we characterise full identifiability. As we have seen, for a convex
feasible set some linear type is always possible at any point on the boundary. Ac-
cordingly, a suitable condition for full identifiability must achieve two aims: first,
ensure that there exists only one possible linear type; and, second, exclude that
any non-linear type is possible. We will accomplish this via a “contains an orthant”
type of condition that is relatable to the “not contained in an orthant” condition for
partial identifiability. However, in this case the statement needs to be somewhat
more nuanced. Figure 5 begins to guide intuition by displaying some possible
configurations of identification and non-identification for linear types. The feasible
sets X are displayed in blue, the normal cones in purple and the cones of feasi-
ble directions, here equal to the tangent cones, in green. The observed choice x∗

is always made to coincide with the origin. The key relation to note is the one
between TX (x∗) = FX (x∗) and the orthants contained in it. Clearly, unlike for
partial identification, a simple containment relation will not work as a condition in
this case.

For 1 ≤ k ≤ N, define a k-dimensional orthant of RN as a cone C
(
vi1 , . . . , vik

)
⊆

RN such that i1, . . . , ik ∈ F are different indices and for all n = 1, . . . , k, we have
vin

j ∈ {−1, 1} if j = in and vin
j = 0 otherwise. For example, an N-dimensional

orthant of RN is a usual orthant, whereas a 1-dimensional orthant of RN is a semi-
axis.

Theorem 3. The type is fully identified at x∗ ∈ ∂X if and only if either

(i) dim X = N and

FX(x∗) ⊇
{

x ∈ RN |
(
xi1 , . . . , xik

)
∈ K

}
, (1)
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(a) Type {2} is fully identified at x∗ (b) Type {2} is fully identified at x∗

(c) No type is identified, TX (x∗) con-
tains no orthant

(d) Types {2} and {1, 2} are possible, TX (x∗)
does contain an orthant

(e) Type {1, 2} is fully identified

Figure 5: Orthant containment is not sufficient for identification.
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where {i1, . . . , ik} is the identified type and K is a closed convex cone in Rk

such that int K ∪ {0} contains an orthant of Rk,

or

(ii) dim X = N − 1 and x∗ ∈ ri X.

We record separately an immediate but notable implication of the result, pro-
viding an absolute constraint on the feasible set for any hope of full identifiability
at some observation:

Corollary 4. For all x∗ ∈ ∂X, the type can be fully identified at x∗ only if dim X ≥ N − 1.

Beside the reversal of the orthant containment relation, the condition of the
theorem differs from the orthant condition for partial identifiability in some addi-
tional details. First, the contained orthant need not be full-dimensional. Second,
what is contained needs to be “a bit more” than the orthant: it is in fact a cone
whose interior in turn contains an orthant. Let us relate the statement to the cases
in Figure 5. In the top left panel, dim X = 2, K is the negative vertical semi-axis and
k = 1. The interior of K, a cone in R1, is itself minus the origin. Therefore int K plus
the origin contains an orthant in R1, which is again the negative vertical semi-axis.
In the bottom left and the middle-right panels, dim X = 2, K is the green cone and
k = 2. The difference between the two panels is that in one case the interior of K (a
cone in R2) plus the origin contains a two-dimensional orthant, while in the other
case it does not. The remaining two panels illustrate the cases where the feasible
set is not full dimensional (case (ii) of the statement). Here, dim X = 1, and the
difference between the two panels is whether or not x∗ is in the relative interior of
the feasible set. The statement takes care of all these situations, permitting exactly
one linear type. In addition, thanks to the interiority aspect of the containment
condition, it also excludes all situations where non-linear types are possible. This
can be illustrated by the difference between points x and y in Figure 1 of the in-
troduction. At y, FX (y) is the open half space to the left of the vertical axis, plus
the negative part of this axis. It contains no K with the properties required in the
statement, and the non-linear type {1, 2} cannot be excluded. Around x the set has
a similar shape as around y, but the orientation is different. FX (x) is the half-space
to the right of the line through x and z, plus the half-line from x in the z direction.
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Clearly there exists a K containing the south-east orthant in its interior as required.
Now type {1, 2} is linear.

We conclude with an alternative characterisation in terms of normal cones,
using similar arguments, where -at the cost of losing the analogy with partial
identification- the dual task performed by the condition is made more explicit.

Theorem 4. The type is fully identified at x∗ ∈ ∂X if and only if either
(i) NX(x∗) ⊆ ri S ∪ {0} for some k-dimensional orthant S of RN, 1 ≤ k ≤ N, and

x∗ ∈ ri Y, where Y is a face of X parallel to N − k coordinate axes with dim Y ≥ N − k.
or
(ii) NX(x∗) is a 1-dimensional subspace of RN.

In this characterisation, the part asserting that the normal cone is contained
in an orthant guarantees the uniqueness of the possible linear types. On the other
hand, the interiority condition on the face excludes the possibility of any non-linear
type. Again, refer to Figure 1, where the partially identified point y does not meet
the interiority condition whereas the fully identified point w does.

6 The linear case

6.1 Polytopes

In this section we focus on the case where the feasible set is a convex polytope.
This is a useful particular case to consider: many situations of economic interests
are described as linear programming problems, and of course this type of set arises
from the convexification of a finite set of feasible alternatives. Furthermore, in this
environment the set of possible types at some observation x coincides with the set
of linear types at x. This makes it possible to offer a different perspective on the
issue of identifiability.

Let X be a non-empty convex polytope in RN defined by:

X = {x ∈ RN | Bx ≤ c},

where B is an m × N-matrix and c is a vector in Rm. From now on we will denote
aI , I ⊆ F, any vector a ∈ RN for which ai ̸= 0 if and only if i ∈ I.

The first result formalises the previous assertion about linear types:
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Lemma 2. If X is a convex polytope, type I is possible at x∗ ∈ ∂X if and only if I is linear.

Let B(j) be the j-row of matrix B. We say that constraint j is active at x∗ ∈ X if

B(j)x∗ = cj.

Denote by B̄ (x∗) the matrix of constraints that are active at x∗. The next result says
that type I being possible is equivalent to the existence of a coefficient vector aI

that is in the convex cone generated by the constraints that are active at x∗:

Theorem 5. Type I is possible at x∗ ∈ ∂X if and only if there exist aI ∈ RN and y ≥ 0
such that aI = B̄T (x∗) y.

The previous result applies to any x∗ on the boundary of the convex polytope X.
In the remainder of this section, we will focus on the important special case when
x∗ is a vertex of X at the intersection of N hyperplanes with linearly independent
normal vectors, i.e., a non-degenerate basic feasible solution of a linear program. In
that case, B̄ (x∗) is an invertible N × N matrix, which allows for a simple criterion
to tell whether or not type I is possible.

Theorem 6. Suppose that x∗ ∈ ∂X and B̄ (x∗) is an invertible N × N matrix. Then type
I is possible at x∗ if and only if there exists aI ∈ RN such that

D (x∗) aI ≥ 0 (2)

for D (x∗) =
(

B̄T (x∗)
)−1.

To get a better understanding of condition (2), it may be beneficial to prove
it directly. To do this, we consider vectors at x∗ in the directions of the adjacent
vertices and check if any component of aI improves. The intuition is that type I is
possible if and only if there is no way to improve the value of

〈
aI , x

〉
by moving

from x∗ along a vector d in the direction of a vertex adjacent to x∗, i.e. when x =

x∗ + λd, λ > 0.

Corollary 5. The type is partially identified at x∗ if and only if there is a column in D (x∗)
that contains both a positive and a negative entry.
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Observe that Corollary 5 is the analog, for the special case of polytopes, of
Corollary 3 for general convex sets. It provides an operational test for the im-
possibility of an elementary type.

For the next statement, we assume, as before, that x∗ is a vertex of X at the
intersection of N hyperplanes with linearly independent normal vectors.

Corollary 6. The full type is always possible at any x∗ ∈ ∂X such that B̄ (x∗) is an
invertible N × N matrix. Hence, only the full type can be fully identified at such x∗.

6.2 Finite sets

Our analysis has focused on convex sets. In some cases, the analysis for non-
convex sets does not require fundamental changes. Take for example the case in
which the feasible set consists of a finite number of alternatives, represented by
vectors x1, . . . , xk ∈ RN. Conditions similar to those obtained previously can be
derived in this environment, too. Let X̂ = [x1 . . . xk] be the corresponding N × k
matrix. Let 1k denote the k−dimensional vector of 1s.

Proposition 2. Type I is possible at x∗ ∈ X such that x∗ /∈ int conv(X) if and only if
there exists aI ∈ RN \ {0} such that

E (x∗) aI ≥ 0 (3)

for the k × N matrix E (x∗) =
(
(x∗)1T

k − X̂
)T.

Note the similarity between (3) and (2) for polytopes. Similarly to Corollary 5,
we have now the following:

Corollary 7. With X finite, the type is partially identified at x∗ ∈ X such that x∗ /∈
int conv(X) if and only if there is a column in E (x∗) that contains both a positive and a
negative entry.

If i is the column with the opposite sign entries, then type {i} can improve ir-
respective of whether his evaluation of the relevant feature is positive or negative.
Theorem 7 then shows that, just like for a general convex set, the type is partially
identified at x∗ if and only if there is a type {i} that is not possible at x∗. What is
more, the sign condition is also related to the orthant condition (ii) of Theorem 2.
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As we noted, the fact that the set of feasible directions straddles two different or-
thants can be interpreted as the existence of at least two feasible rates of exchange
attaching opposite signs to the values of some feature. But the sign condition of
the finite case says exactly this, for movements from the chosen alternatives to two
different ones.

Finally, observe that the caveat in the statement, x∗ /∈ int conv(X), is necessary
in a finite environment. This is because some interior points may be chosen by a
non-linear type. Here, as well as in other non-convex cases, more radical changes
might be required. This may be an interesting topic for future research.

7 Multiple observations

We have dealt with identification from a single choice event. In practice, the an-
alyst may observe more than a single choice event. Intuitively, this will increase
identification power. Our analysis for a single observation provides immediate
implications on the way this increase comes about. Suppose that the data are a
finite set of pairs of feasible set and choice observation, O =

{(
Xt, xt)}

t∈T, where
T is a finite index set. A type I is possible at O if there exists an evaluation func-
tion e such that (e, I) is possible at each

(
Xt, xt). The notions of partial and full

identification at O are adapted in the obvious way.
One important initial caveat is that there is no analog of Proposition 1 here,

as the various observations might “contradict” each other and make each type im-
possible. Therefore, the model is falsifiable by multiple observations. For example,
suppose that for two observations the feasible set is the same and coincides with
the one depicted in Figure 1. If the observations are x and y, then no single type
could have produced them. In fact, the only type that is possible at each observa-
tions taken on its own is {1, 2}, but in one case the evaluation function must treat
feature 1 as a negative while in the other case it must treat it as a positive. No
common evaluation function serves the purpose of explaining the observations
together.

On the other hand, if the observations were y from the feasible set in Figure
1 (where types {1, 2} and {1} are possible) and x from the right hand panel of
Figure 4 (where types {1, 2} and {2} are possible), then type {1, 2} would be fully
identified, since on both occasions the features that make type {1, 2} possible are
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positives.
Taking into account this caveat, the following results formalise how multiple

observations sharpen identifiability.

Theorem 7. Suppose that some type is possible at O. The type is partially identified if and
only if there is no orthant K such that

⋃
t F
(
xt) ⊆ K.

For full identification, the following result extends Theorem 3 to multiple ob-
servations.

Theorem 8. Suppose that some type is possible at O and that all feasible sets Xt are full-
dimensional. The type is fully identified if

⋃
t

F
(
xt) ⊇ {x ∈ RN |

(
xi1 , . . . , xik

)
∈ K

}
, (4)

where {i1, . . . , ik} is the identified type and K is a closed convex cone in Rk such that
int K ∪ {0} contains an orthant of Rk. The condition is necessary with

⋃
t F
(
xt) replaced

by conv(
⋃

t F
(
xt)).

An interesting difference with the single observation case -where the uniquely
identified type must be linear- is that with multiple observations the uniquely
identified type can be non-linear at each observation in O. The example in Fig-
ure 6 illustrates.

The results for the linear and finite cases are also easily extended. For example,
Theorem 6 is extended as follows. Suppose that for all t ∈ T, xt ∈ ∂Xt and B̄t

(
xt)

is an invertible N × N matrix. Then type I is possible at O if and only if there exists
aI ∈ RN such that16

DAI ≥ 0

for the N × N matrix Dt (x∗) =
(

B̄t
T (xt))−1

,

D =
[

D1(x1) . . . D|T|(x|T|)
]

,

16Notation M ≥ 0 means here that each element of matrix M is non-negative.
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Figure 6: Type {1, 2}, which is non-linear (and thus not fully identifiable) at x∗ in
each observation taken on its own, is the type that is uniquely identified by the
two observations taken together.
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and

AI =


aI · · · 0

... . . . ...

0 · · · aI

 .

Note that D is N × N · |T| and AI is N · |T| × |T|. Other results are extended
similarly.

8 Related literature

The classical view of alternatives as bundles of characteristics demanded by a con-
sumer is due to Lancaster [18]. In his analysis, these characteristics are objectively
known and are the same for all consumers. This assumption is problematic, since
different consumers may well focus on different characteristics and the analyst
may find it hard to tell which characteristic any given consumer deems relevant.17

Much of the literature in this vein has relied on specific functional forms to iden-
tify preferences. More recently, Blow, Browning and Crawford [8] have pioneered
a non-parametric, “revealed preference” type of analysis in such characteristics-
based models. They characterise exactly which types of market choices by hetero-
geneous consumers are consistent with the model. At a broad conceptual level,
our analysis is related to this approach, although the development is markedly
different in that we take a more abstract, choice-theoretic standpoint. For example,
we don’t assume that the feasible set is determined by competitive budgets, nor
that a utility function is being maximised. From this more abstract perspective, the
very recent work by Allen and Rehbeck [1] appears to be first to introduce attribute
variation (as opposed to choice set variation) in stochastic choice. Using this type
of variation, they characterise a large class of models in which the desirability of

17The issues that motivated Lancaster’s “new approach”, such as the evaluation of new goods
and understanding the complementarities between them, are still very relevant. Ingenious solu-
tions must be provided ad hoc (e.g. Gentzkow [17]) when utility is defined on goods instead of
features because, as Lancaster puts it, “there is no reason except “tastes”” why even wood and
bread should not be close substitutes. Instead, the fact that objects such as of bread and wood
are described very dissimilarly makes their non-substitutability intuitive within the theory. The
problem, addressed by our analysis, is to turn such descriptions into observables.
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different attributes is captured by a utility index. They show in particular that the
class of strict perturbed utility models (strict PUMs) is completely characterised by
a form of multivariate law of demand on utility indices and choice probabilities.

One natural reason why DMs may (differentially) neglect features is bounded
rationality and specifically limited attention. In this vein, the already mentioned
Gabaix [16] studies cognitively constrained agents who vastly simplify reality by
efficiently allocating limited attention to different features. This leads them to per-
form “sparse optimisation”, namely optimisation where only a few of the poten-
tially relevant features are “switched on”. Sparse econometric models capture a
similar insight in an effort to make good predictions with only a small number of
features playing a critical role. In such cases our view of a DM is close to that of
Gabaix, in that we admit DMs who may switch off many features. However, we
remain agnostic on whether or not a discrepancy between the analyst’s and the
agent’s description of the alternatives is due to bounded rationality. For instance,
a voter who focuses on a single political issue may well be expressing a political
attitude rather than a cognitive limitation. Also, sparsity is not an intrinsic feature
of our analysis and we admit DMs who consider many or even all features. Our
framework fits Gabaix’s [16] approach and the literature it has spawned; that of
Demuynck and Seel [14], who study consumers who focus their attention on a sub-
set of the goods; and that of Chetty, Looney and Kroft [11], who study consumers
who may ignore the feature “sales tax” when making a purchase. Note that our
approach differs from that taken in Cerigioni and Galperti [9], who look at how
the order of presentation/framing of attributes influences agent’s evaluation of a
good.

The theoretical study of surveys is gaining increasing traction in economics,
and we have mentioned that one potential application of our framework is to the
design of surveys for identification purposes. A recent example of this interest is
Apesteguia and Ballester [2], who consider the complementary issue of the ratio-
nalisation of a DM’s survey responses.18

At the technical level, our model presents points of contact with Che et al. [10].
Their paper elegantly resolves the long standing question about the connection be-

18Their concept of rationalisability for binary responses is that the DM’s opinion can be expressed
as a point on the real line in such a way that the DM endorses the questions that are closely aligned
with the opinion.
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tween linear maximisation and the Pareto optimal points of a convex set (also dealt
with in the already mentioned classic paper by Arrow, Barankin and Blackwell [4]).
They characterise the strong Pareto optimal frontier in terms of sequential exposure,
namely the iterated application of linear maximisation to expose the face to whose
interior a Pareto optimal point belongs. As we have noted at several places, some
of the complexity in our characterisations comes precisely from the existence of
points that are not (directly) exposed. Our example in Figure 1 is similar to the
“canonical” example in [10], the main difference being that in our approach the
directions of improvements are unknown. While we don’t make use of their se-
quential exposure characterisation, it might be interesting, in future work, to dis-
tinguish types of different “orders”. For example, at the choice point y in Figure 1
we might say that type {1} is first-order, as its choice can be exposed in one-step
by linear maximisation, whereas type {1, 2} is “second-order”, since its choice can
only be exposed in two steps of linear maximisation. That said, one of the main
issues for identification in our paper, the orientation of the set, is not relevant at all
in [10].

9 Concluding remarks

Identifying relevant features from a limited dataset for demand by using a stan-
dard econometric techniques is very difficult. Normally this is done starting from
demand shares, requires imposing assumptions on the utility function, typically
additive with additional distributions on the error term (see e.g. Berry and Pakes
[5]). Our setup allows for identification of relevant characteristics in a very poor
informational setup, where we don’t even need to assume that decision makers
have a utility, nor we need to observe prices (unlike, for instance, in hedonic mod-
els). Hence our setup can be seen as complementary to more standard approaches,
in that, when at least partial identification is possible, it could be used as a first step
to screen out irrelevant characteristics, and then proceed with a fuller parametric
model safe in the knowledge that irrelevant characteristics won’t be included.

Our limited dataset could consist of a single observation. In Section 7, we
have studied how multiple observations increase the identifying power. For fu-
ture work, however, we are interested in a more radical extension of the frame-
work. Suppose that we observe a distribution p of choices with a finite support

26



x1, . . . , xk ∈ X. Then, if for every j = 1, . . . , k, the decision-maker’s choice is fully
identified at xj, then we can recover the distribution of types completely. But, even
if the decision-maker’s type is only partially identified for some j, we can still re-
cover the distribution of types up to a certain limit, as explained below.

Let I = 2F \ {∅} be the set of all types. For j = 1, . . . , k, let Π(j) ⊆ I be the
set of possible types at xj. In particular, if the DM’s type is fully identified at xj,
then Π(j) consists of a single element. If the DM’s type is not identified at xj, then
Π(j) = I .

Let P be the underlying distribution of types, ∑I∈I P(I) = 1. For any I ∈ I ,
the lower and the upper estimates of P(I) are given by

P∗(I) = ∑
j: Π(j)={I}

p(xj), P∗(I) = ∑
j: Π(j)⊇{I}

p(xj)

The lower estimate P∗(I) takes into account cases where I is fully identified. In
contrast, the upper estimate P∗(I) takes into account cases where I is a possible
type. Following the same logic for a set of types T ⊆ I , the lower and the upper
estimates of probability P(T) are given by

P∗(T) = ∑
j: Π(j)⊆T

p(xj), P∗(T) = ∑
j: Π(j)∩T ̸=∅

p(xj).

Note that P∗(T) = 1 − P∗(T), which implies that P∗ alone is sufficient to charac-
terize the set of possible distributions of types. These are distributions P on I such
that

P(T) ≥ P∗(T) (5)

for any T ⊆ I . Thus, even if the decision-maker’s type is not completely iden-
tifiable for some xj, we can still recover the true distribution of types up to the
set (5).19

19Technically, the true distribution of types P belongs to the core of the belief function P∗. Note
that P∗ is in general not a probability distribution because it might not be additive. The belief
function P∗ is characterized by 2|I| − 2 numbers corresponding to all non-trivial subsets of types.
A more compact representation of the core of P∗ requiring |I| − 1 numbers is given by its centroid,
which is the probability distribution in the center of the core. Such compact representation is valid
under the principle of insufficient reason (Eichberger and Pasichnichenko [15]) with respect to the
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Assuming more stochastic observations, from several feasible sets, should help
us to refine the set of possible type distributions.

Appendix A. Proofs

Lemma 1

(i) For any v ∈ RN, let supp(v) = {i ∈ F | vi ̸= 0}. Suppose that there exists a ∈ RN

such that supp (a) = I and ⟨a, x∗⟩ ≥ ⟨a, x⟩ for all x ∈ X. Define an evaluation
function e by setting e (i) = 0 ⇐⇒ ai = 0, e (i) = 1 ⇐⇒ ai > 0, and e (i) =

−1 ⇐⇒ ai < 0. Suppose that for some x ∈ X, for all i, e (i) xi ≥ e (i) x∗i . Then
it must be e (i) xi = e (i) x∗i for all i, in view of x∗ being a maximiser of ⟨a, .⟩ on X.
This means that x∗ is e-admissible, and therefore I is possible at x∗.

(ii) Let I be possible at x∗ ∈ X. First, consider the case where I = F. Since
x∗ ∈ ∂X, by the supporting hyperplane theorem, there exists a non-zero a ∈ RN

such that ⟨a, x∗⟩ ≥ ⟨a, y⟩, for all y ∈ X. Then, the type J = supp(a) is linear at x∗

and satisfies J ⊆ F, where J ⊂ F if ai = 0 for some i ∈ I.
Next, suppose that I ⊂ F. In this case, consider the projection of all vectors

y ∈ X on the subspace V generated by {1i}i∈I .
20 Let XV denote this projection

of all y ∈ X on V. Since X is a compact, convex set, so is XV . Observe that the
projection x∗V of x∗ on V lies in ∂XV , where ∂ denotes the boundary of XV in the
subspace V. To see this, suppose that x∗V /∈ ∂XV . Then, for any evaluation function
e with e(i) ̸= 0, for all i ∈ I, there exists y ∈ XV with e (i) yi > e (i) (x∗V)i, for all
i ∈ I. But, this implies that I is not possible at x∗ ∈ X such that we have arrived at
our desired contradiction. It follows that x∗V ∈ ∂XV . Therefore, by the supporting
hyperplane theorem applied in V, there exists a non-zero a ∈ RN such that ai = 0,
for all i ∈ F \ I, and ⟨a, x∗V⟩ ≥ ⟨a, y⟩, for all y ∈ XV . Clearly, it also holds that
⟨a, x∗⟩ ≥ ⟨a, y⟩, for all y ∈ X. Hence, the type J = supp(a) is linear at x∗ and
satisfies ∅ ̸= J ⊆ I.

types in Π(j).
20The projection of y ∈ RN on the subspace V generated by {1i}i∈I is z ∈ RN such that zi = yi

for i ∈ I and zi = 0 otherwise.
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Proposition 1

(i) Recall first that under the assumptions of the statement, for any non-zero a ∈
RN, there exists x (a) ∈ ∂X such that ⟨a, x (a)⟩ ≥ ⟨a, y⟩ for all y ∈ X.21 Thus,
choosing a such that supp (a) = I, I is linear at x (a). The conclusion follows from
Lemma 1. (ii) By convexity, there exists a non-zero a ∈ RN such that ⟨a, x⟩ ≥ ⟨a, y⟩
for all y ∈ X, and again Lemma 1 yields the conclusion with I = supp (a).

Theorem 1

(i) Let types I and J be possible at x∗. We will show that (e, I ∪ J) is also possible
at x∗ with

e(i) =


eI (i) for i ∈ I

eJ (i) for i ∈ J \ I

0 otherwise

For any evaluation function ē, let supp(ē) = {i ∈ F | ē(i) ̸= 0}. Note that by defi-
nition supp(e) = I ∪ J. Assume that x ∈ RN, e(i)xi ≥ e(i)x∗i for all i ∈ I ∪ J, and
e(î)xî > e(î)x∗

î
for some î ∈ I ∪ J. We must show that x /∈ X. The fact that (eI , I) is

possible implies that x /∈ X or e(i)xi = e(i)x∗i for all i ∈ I. In the second case, we
have xi = x∗i for all i ∈ I, which implies eJ(i)xi = eJ(i)x∗i for all i ∈ I ∩ J. Hence,
we have î ∈ J \ I and eJ(i)xi ≥ eJ(i)x∗i for all i ∈ J. Since (eJ , J) is possible, this
implies x /∈ X. Therefore, I ∪ J is a possible type.

(ii)22 Let I ⊆ 2F be a nonempty collection of types that is closed under union.
For each type I ∈ I , let 1I ∈ RN be the vector whose ith component is 1 if i ∈ I
and 0 otherwise (using the simplified notation 1i when I = {i}), and let xI =

1
|I|1I

(observe that ⟨xI , 1⟩ = 1). Also, let xi = 1
2 1i. Note that, by the closure under union

of I , supp (x) ∈ I for all x in the convex hull FI of the vectors xI . We are going to
construct the convex polytope X of the statement in various steps. First, let D be

21We give the proof of this well-known fact here for completeness. Clearly, the function f : X →
RN , defined by f (x) = ⟨a, x⟩, a ∈ RN is continuous. By Weierstrass Theorem, this implies that f
has a maximiser x (a) ∈ X. If x (a) is in the interior of X, then it is easy to show that a = 0. Since
this case is excluded, x (a) ∈ ∂X.

22We are grateful to a referee for suggesting the argument in this proof.
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the downward closed23 and convex hull of the vectors xI such that I ∈ I and of
the vectors

{
xi}

i∈F. Next, to obtain a bounded set, let Y = {x ∈ D | x ≥ −1}. Note
that the vectors xI maximise on Y the linear function ⟨., 1⟩ and FI forms a face of
Y. Moreover 0 ∈ int Y and Y is a convex polytope. It follows that the polar set
Y∗ =

{
x ∈ RN| ⟨x, y⟩ ≤ 1 ∀y ∈ Y

}
is also a convex polytope with 0 ∈ int Y∗. Also,

since ⟨1, y⟩ ≤ 1 for all y ∈ Y, 1 ∈ Y∗.
Now we set X = Y∗, and show that the set of types that are possible at x∗ = 1

is I . Take I ∈ I . We show that (e, I) is possible at 1 with e (i) = 1 for all i ∈ I. In
fact, if there is an x such that xi ≥ 1 for all i ∈ I with xi > 1 for some i ∈ I, then
⟨x, 1I⟩ > ⟨1, 1I⟩, which implies

〈
x, 1

|I|1I

〉
> 1, so that x /∈ X.

Conversely, suppose that a type J is possible at 1. As will be shown later
(Lemma 2), for a convex polytope a type that is possible at some x is linear at x.
Therefore, 1 maximises some linear function ⟨c, .⟩, with supp (c) = J and ⟨c, 1⟩ = 1.
Note that c ∈ Y. Since ⟨y, 1⟩ < 1 for all y ∈ Y that are not in FI , c ∈ FI . Therefore,
J ∈ I .

Theorem 2

(i) =⇒ (ii): Suppose that C
(
v1, ..., vN) is an orthant such that

FX (x∗) ⊆ C
(

v1, ..., vN
)

.

Since C
(
v1, ..., vN) is closed, we also have TX (x∗) ⊆ C

(
v1, ..., vN). Hence

C0
(

v1, ..., vN
)
⊆ T0

X (x∗)

(recall that S0 denotes the polar cone of a set S), that is, C
(
−v1, ...,−vN) ⊆ NX (x∗).

In particular, for any I ⊆ F, aI = ∑i∈I(−vi) ∈ NX (x∗). Then
〈

aI , x∗
〉
≥
〈

aI , x
〉

for
all x ∈ X. By the first part of Lemma 1, type I is possible at x∗. Thus any type I is
possible at x∗ and the type is not identified.

(ii) =⇒ (iii): Suppose there is no orthant that contains FX(x∗). Then, there
exist v, w ∈ FX(x∗) such that vi > 0 and wi < 0 for some i ∈ {1, . . . , N}. Hence,
yi > x∗i > zi for some y, z ∈ X. This implies that x∗i = αyi + (1 − α) zi for some
α ∈ (0, 1). Therefore, x∗ is not {i}-extreme. Additionally, yi > x∗i > zi implies

23The downward closure of a set S is the set ∪x∈X
{

y ∈ RN | y ≤ x
}

.
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that for any evaluation function e with supp(e) = {i}, x∗ is not e-admissible at x∗

(yi > x∗i excludes e(i) = 1, and x∗i > zi excludes e(i) = −1). Therefore, type {i} is
not possible at x∗.

(iii) =⇒ (i): If x∗ is not {i}-extreme, then there exist y, z ∈ X \ {x∗} and
α ∈ (0, 1) such that x∗i = αyi + (1 − α) zi with yi ̸= zi. Then either yi > x∗i > zi or
zi > x∗i > yi holds. In any case, x∗ is not e-admissible for any evaluation function
e such that supp(e) = {i}. Therefore, type {i} is not possible at x∗ and the type is
partially identified at x∗.

Corollary 1

Suppose that TX (x∗) is contained in an orthant C
(
v1, ..., vN). Then

〈
x, vi〉 ≥ 0 for

each x ∈ TX (x∗) and each basis vector vi. It follows that vi ∈ −T0
X (x∗) for all vi,

and therefore TX (x∗) ⊆ C
(
v1, ..., vN) ⊆ −T0

X (x∗). Hence, if X is fat at x∗, TX (x∗)
cannot be contained in an orthant, and we can apply part (ii) of Theorem 2 to prove
the statement.

Corollary 2

Suppose that the type is not identified at x∗. Then in particular all elementary types
I = {i} are possible at x∗. The second part of Lemma 1 implies that there exists ai =

(0, ..., 0, ai, 0, ..., 0), ai ̸= 0, such that
〈

ai, x∗
〉
≥
〈

ai, x
〉

for all x ∈ X \ {x∗} and i ∈ F.
It must be

〈
ai, x∗

〉
>
〈

ai, x
〉

for some i, for otherwise aixi = aix∗i for all i and x =

x∗. Hence, for all x ∈ X \ {x∗},〈
∑

i
ai, x∗

〉
= ∑

i

〈
ai, x∗

〉
> ∑

i

〈
ai, x

〉
=

〈
∑

i
ai, x

〉
, (6)

so that x∗ is exposed.

Theorem 3

Sufficiency. For condition (i), suppose that (1) holds and let I = {i1, . . . , ik}. We will
show that any type I′ ̸= I is not possible.

First, let I′ be such that there exists i′ ∈ I′ such that i′ /∈ I, and let e be an
evaluation function for type I′. It follows from (1) that both x∗ + ε1i′ and x∗ − ε1i′
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are in X for some ε > 0. If I′ is possible, then either e(i′) = 1 or e(i′) = −1.
Clearly, x∗ is not e-admissible in the first case because x∗ + ε1i′ ∈ X, and it is not
e-admissible in the second case because x∗ − ε1i′ ∈ X. Hence, I′ is not possible.

Now assume there exists I′ ⊂ I that is possible with some evaluation function
e. Assume also that I = F. The proof for I ̸= F is essentially identical but requires
additional notation. Since int K ∪ {0} contains an orthant of RN, the next lemma
shows that the projection of K on the subspace V generated by {1i′}i′∈I′ coincides
with the whole subspace V.

Lemma 3. Let C
(
v1, . . . , vN) be an orthant of RN and K be a closed convex cone such

that C
(
v1, . . . , vN) ⊂ int K ∪ {0}. Then, for any I′ ⊂ F, the projection of K on the

subspace V generated by {1i′}i′∈I′ coincides with V.

Proof. Because K is a convex cone, we only need to show that 1i′ and −1i′ belong to
the projection for all i′ ∈ I’. One of the two vectors 1i′ and −1i′ lies in C

(
v1, . . . , vN)

and, hence, also in K by definition, so that it belongs to the projection. Without loss
of generality, let this vector be −1i′ . As for the other vector 1i′ , take any j /∈ I′. By
the condition of the lemma, there is a neighbourhood of vj that is contained in K.
This implies that there exists an ε > 0 such that vj + ε1i′ ∈ K. But then, the vector
d = 1

ε (v
j + ε1i′) is also in K. The projection of d on V is 1i′ .

It follows from Lemma 3 that there exists d ∈ K such that its projection d̄ on
V coincides with the evaluation function e, i.e., d̄i = e(i) for all i ∈ F . Since by
condition (1) x∗ + εd ∈ X for some ε > 0, this implies that x∗ is not e-admissible
for I′. Therefore, I is the only possible type.

Sufficiency of (ii) is proven similarly. Note that dim X = N − 1 implies that
there is a unique (up to a non-zero scalar multiplication) vector w ∈ RN that is or-
thogonal to all vectors in FX(x∗). Since w exposes X, we have x∗ ∈ arg maxx∈X ⟨w, x⟩
and type I = supp(w) is possible by Lemma 1. Let I′ ⊆ F be such that there ex-
ists i′ ∈ I′ such that i′ /∈ I. Since x∗ ∈ ri X, it must be that x∗ + e(i′)ε1i′ ∈ X
for some ε > 0. But then x∗ is not e-admissible for I′. Assume now that I′ ⊂ I.
Since x∗ ∈ ri X, the projection of FX(x∗) on the subspace V generated by {1i′}i′∈I′

coincides with V. Hence, there exists d ∈ FX(x∗) such that its projection on V is
e. Since x∗ + εd ∈ X for some ε > 0, this implies that x∗ is not e-admissible for I′.
Hence, such I′ is not possible either.
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Necessity. Suppose that the type is fully identified at x∗ ∈ ∂X. In particular,
this means that if x∗ ∈ arg maxx∈X ⟨v, x⟩ and x∗ ∈ arg maxx∈X ⟨w, x⟩ for v, w ∈
RN, then supp(v) = supp(w). In the following two lemmas, we will use convex
analysis to explore the restrictions this imposes on the structure of the normal and
tangent cones at x∗.

Lemma 4. The type is fully identified at x∗ ∈ ∂X only if either

(i) NX (x∗) ⊆ ri C
(
vi1 , . . . , vik

)
∪ {0} for some k-dimensional orthant

C
(
vi1 , . . . , vik

)
of RN, 1 ≤ k ≤ N,

or

(ii) NX (x∗) is a 1-dimensional subspace of RN.

Proof. Note that for any nonzero vector x ∈ RN, there exist a unique 1 ≤ k ≤ N
and a unique k-dimensional orthant C

(
vi1 , . . . , vik

)
such that x ∈ ri C

(
vi1 , . . . , vik

)
.

It follows from the definition of full identification and lemma 1 that, since the type
is fully identified, all non-zero vectors a ∈ NX(x∗) must share the same set of
indices i with non-zero entries ai. Thus, all non-zero vectors of NX(x∗) must belong
to the relative interiors of the orthants of the same dimensionality k. If they all
belong to the same k-dimensional orthant, then (i) holds. Otherwise, assume that
there exist x, y ∈ NX(x∗) \ {0} in different k-dimensional orthants. Since x and y
share the same set of indices i with non-zero entries, this implies that xi > 0 and
yi < 0 for some i = 1, . . . , N. But then, we have both αxi + (1 − α)yi = 0 for
some α ∈ (0, 1), and αx + (1 − α)y ∈ NX(x∗) by convexity. This contradicts the
assumption of full identification unless αx + (1 − α)y = 0. Thus, if x and y belong
to different k-dimensional orthants, then they belong to the same 1-dimensional
subspace. Since for a non-zero vector, there is only one 1-dimensional subspace
containing it, condition (ii) holds. The lemma is proved.

Lemma 5. The type is fully identified at x∗ ∈ ∂X only if either

(i) dim X = N and

TX (x∗) =
{

x ∈ RN |
(
xi1 , . . . , xik

)
∈ KT

}
, (7)

where {i1, . . . , ik} is the identified type and KT is a closed convex cone in Rk

such that int KT ∪ {0} contains an orthant of Rk,
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or

(ii) dim X = N − 1 and x∗ ∈ ri X.

Proof. First, consider the case dim X = N. Let I = {i1, . . . , ik} be the identified
type. Note that for any y ∈ RN, there exist unique yI and yF\I such that y =

yI + yF\I , where (yI)i = 0 for all i ∈ F \ I and (yF\I)i = 0 for all i ∈ I. Since I is the

fully identified type, we have
〈

yF\I , x
〉
= 0 for all x ∈ NX(x∗). Hence, y ∈ TX(x∗)

if and only if ⟨yI , x⟩ ≤ 0 for all x ∈ NX(x∗). Clearly, such yI’s form a closed convex
cone which we denote TX,I .

We will show next that only condition (i) of Lemma 4 is possible in the case
dim X = N. To the contrary, assume that NX(x∗) is a 1-dimensional subspace of
RN. But then, because NX(x∗) and TX(x∗) are polar and x,−x ∈ NX(x∗) for some
x ̸= 0, we have ⟨y, x⟩ ≤ 0 and ⟨y,−x⟩ ≤ 0 for any y ∈ TX(x∗), which implies
⟨y, x⟩ = 0. Thus, TX(x∗) is contained in the orthogonal complement24 of NX(x∗)
and, therefore, dim TX(x∗) ≤ N − 1. This contradicts the assumption dim X = N.
Thus, by Lemma 4, all the non-zero vectors of NX(x∗) are contained in the relative
interior of a single k-dimensional orthant C(vi1 , . . . , vik) of RN.

We will use the result of the previous paragraph to show that ri TX,I ∪ {0} con-
tains a k-dimensional orthant. Indeed, for any non-zero x ∈ NX(x∗), we can write
x = ∑k

n=1 αin vin , where αin > 0 for all n = 1, . . . , k, so that
〈
−vin , x

〉
= −αin < 0.

Hence, ⟨y, x⟩ < 0 for any non-zero y ∈ C(−vi1 , . . . ,−vik) and x ∈ NX(x∗), which
implies that all the non-zero vectors of C(−vi1 , . . . ,−vik) are contained in ri TX,I .
Then, the representation (7) follows.

Consider now the case dim X ≤ N − 1. Note that there exists y ∈ RN such
that y ̸= 0 and ⟨y, x − x∗⟩ = 0 for all x ∈ X. This implies that both y,−y ∈
NX(x∗), so that only condition (ii) of Lemma 4 remains possible. Thus, dim X ≤
N − 2 is incompatible with full identification, since there exist at least two linearly
independent vectors in NX(x∗) in this case. As for dim X = N − 1, observe that
when x∗ is on the relative boundary of X, there exists a supporting hyperplane
containing x∗ with the normal z in the same subspace. Since z ∈ NX(x∗) and also
y ∈ NX(x∗) for some y ̸= 0 such that ⟨y, z⟩ = 0, condition (ii) of Lemma 4 is
violated. Therefore, x∗ ∈ ri X. The lemma is proved.

24The orthogonal complement V⊥ of a subspace V of RN is the subspace of all vectors w ∈ RN

that are orthogonal to all vectors v ∈ V, that is V⊥ =
{

w ∈ RN | ⟨w, v⟩ = 0 ∀v ∈ V
}

.
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Figure 7: Example for equation (8)

To conclude the proof of the theorem, it is left to show that (7) implies (1) when
the possible type is unique. Because the tangent cone is the closure of the cone of
feasible directions, this does not follow automatically.

Let C(v1, . . . , vk) be the orthant of Rk that is contained in int KT ∪ {0}, i.e., for
any n = 1, k, we have vn ∈ Rk and either vn = 1n or vn = −1n. For all n = 1, k, let

v̂n = vn − ε ∑
n′=1,k
n′ ̸=n

vn′
(8)

(an example is shown in Figure 7). Since C(v1, . . . , vk) is in int KT ∪{0}, there exists
ε > 0 such that C(v̂1, . . . , v̂k) is in int KT ∪ {0} too. Fix such ε and define K by

K = C(v̂1, . . . , v̂k).

Clearly, K is a closed convex cone in Rk such that int K ∪ {0} contains an orthant
of Rk. Define G by

G =
{

x ∈ RN |
(
xi1 , . . . , xik

)
∈ K

}
.

By construction, we have G ⊆ TX(x∗). For the final step of the proof, we will show
that G ⊆ FX(x∗).

Denote by I the identified type {i1, . . . , ik}. If I = F, then G ⊆ FX(x∗) by
the construction of G because in this case K is a cone in RN and K ⊆ FX(x∗).
Otherwise, let V be the subspace generated by {1i′}i′∈F\I . Define the slice S of
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FX(x∗) as

S = FX(x∗) ∩ V.

Note that S contains all directions y ∈ FX(x∗) such that yi = 0 for all i ∈ I. Clearly,
S is a convex cone.

We will show that S = V. Assume, to the contrary, that this does not hold. Any
convex cone that is not the whole space must be contained in a closed half-space.
Applying this to V, there exists v ∈ V, v ̸= 0, such that ⟨v, y⟩ ≤ 0 for all y ∈ S.
Since v ̸= 0, the set I′ of indices i′ ∈ F for which vi′ ̸= 0 is not empty. Then, we can
show (Figure 8 contains an example) that type I ∪ I′ is possible with

e(i) =



eI(i) for i ∈ I

1 for i ∈ I′ such that vi > 0

−1 for i ∈ I′ such that vi < 0

0 otherwise

Indeed, if x ∈ RN, e(i)xi ≥ e(i)x∗i for all i ∈ I ∪ I′, and e(j)xj > e(j)x∗j for some
j ∈ I ∪ I′, then, for type I to be possible, it must be x /∈ X or e(i)xi = e(i)x∗i for all
i ∈ I. In the second case, we have x − x∗ ∈ V and j ∈ I′. Hence,

⟨v, x − x∗⟩ = ∑
vi>0

vi(xi − x∗i ) + ∑
vi<0

vi(xi − x∗i ) > 0

by the construction of e. This implies x − x∗ /∈ S and x /∈ X, from which it follows
that I ∪ I′ is a possible type. Since the possibility of both I and I ∪ I′ contradicts
full identification, we have S = V.

Therefore, FX(x∗) contains V, from which G ⊆ FX(x∗) follows by convexity.
This concludes the proof of the theorem.

Theorem 4

Sufficiency. Obviously, all vectors a ∈ ri S share the same set of indices i with non-
zero entries ai. Let I ⊆ F be the set of all such indices. By Lemma 1, no type J ⊂ I
is possible at x∗. To see this observe that otherwise there would exist a type K ⊆ J
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Figure 8: Example in the 23-plane. Possible types are 1 and 123

which is linear at x∗, contradicting that all vectors a ∈ ri S share the same set of
indices i with non-zero entries ai. Now, consider all remaining types J ⊆ F, J ̸= I.
For such types, there exists j ∈ J such that j /∈ I. By x∗ ∈ ri Y, where Y is a face of X
parallel to |F \ I| coordinate axes with dim Y ≥ |F \ I|, there exist y+, y− ∈ X such
that y+(j) > x∗(j) > y−(j) and y+(i) = x∗(i) = y−(i), for all i ̸= j. It follows that
no such type J is possible at x∗. Hence, type I is fully identified at x∗. A similar
argument can be made for the non-zero vectors of a 1-dimensional subspace.

Necessity. In view of Lemma 4 in the previous proof, we only show the necessity
of the second part of (i). Let I denote the type {i1, . . . , ik} identified at x∗. If I =

F, then the second part of (i) is trivially satisfied. To see this, observe that then
k = |I| = |F| = N. In this case, x∗ ∈ ri Y, for Y being a face of X with dim Y ≥
N − N = 0 always holds, because the relative interior of any point is the point
itself. Analogously, the condition on Y being parallel to N − N = 0 coordinate
axes also holds in a trivial way.

Next, let V be the subspace generated by {1i′}i′∈F\I and Y be the face of X with
x∗ ∈ Y. Define the slice S of Y as

S = Y ∩ V

Note that S contains all directions y ∈ Y such that yi = 0, for all i ∈ I. Clearly, S is
a convex set.

We will show that 1i′ ∈ V implies that both (x∗ + ε1i′) ∈ S and (x∗ − ε1i′) ∈ S,
for some ε > 0. Now, assume to the contrary, that this does not hold. Note that any
convex set S for which this does not hold must be contained in a closed half-space
of V that contains x∗. As such, there exists v ∈ V, v ̸= 0, such that ⟨v, y⟩ ≤ 0, for
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all y ∈ S. Since v ̸= 0, the set I′ of indices i′ ∈ F for which vi′ ̸= 0 is not empty.
Then, we can show that type I ∪ I′ is possible using essentially the same argument
used in the proof of Theorem 3. It follows that there exists ε > 0 such that for all
1i′ ∈ V it holds that (x∗ + ε1i′) ∈ S and (x∗ − ε1i′) ∈ S.

Hence, x∗ ∈ ri Y, for some face Y of X parallel to |F \ I| = N − k coordinate
axes with dim Y ≥ |F \ I| = N − k. This concludes the proof.

Lemma 2

One direction is a special case of Lemma 1. For the other direction, recall that by
a standard result (Arrow et al [4], Theorem 1) for a convex polytope S ⊂ RN the
set of points x ∈ S such that y ≥ x & y ̸= x =⇒ y /∈ S coincides with the set
of points in S that maximise a linear function ⟨a, .⟩ where a has strictly positive
components. A straightforward extension of this result is that, for an evaluation
function e such that e (i) ̸= 0 for all i, the set of e-admissible points coincides
with the set of points in S that maximise a linear function ⟨a, .⟩ where a satisfies
sign(ai) = ei (the result in Arrow et al [4] corresponds to the case e (i) = 1 for all
i). If (e, I) is possible at x∗ ∈ X, then the projection x′ of x∗on RI has the property
that e (i) yi ≥ e (i) x′i ∀i ∈ I & y ̸= x′ =⇒ y /∈ X′, where X′ denotes the projection
of X on RI . What is more, e (i) ̸= 0 for all i ∈ I. Since X′ is also a convex polytope,
by the previous result (applied to the subspace), there exists a′ ∈ RI with non-zero
components such that ⟨a′, x′⟩ ≥ ⟨a′, y′⟩ for all y′ ∈ X′. Therefore

〈
aI , x

〉
≥
〈

aI , y
〉

for all y ∈ X where aI
i = a′i for i ∈ I. Thus, I is a linear type at x.

Theorem 5

Suppose that type I is possible at x∗. By Lemma 2, this means that there exists an
aI ∈ RN such that x∗ is an optimal solution to the linear program

max
Bx≤c

〈
aI , x

〉
By the Strong Duality Theorem (Bertsimas and Tsitsiklis [7], p. 148), the dual

problem

min
BTy=aI , y≥0

⟨c, y⟩
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also has an optimal solution y∗. Since y∗ is feasible, we have y∗ ≥ 0 and aI = BTy∗.
By Complementary Slackness (Bertsimas and Tsitsiklis [7], p. 151),

y∗j
(

B(j)x∗ − cj

)
= 0, for all j = 1, . . . , m

where B(j) is the j-row of B, j = 1, . . . , m. Therefore, y∗j = 0 for the constraints that
are not active at x∗. This implies that aI = B̄T (x∗) ȳ∗ for ȳ∗ obtained from y∗ by
filtering out non-active constraints.

Conversely, suppose that aI = B̄T (x∗) y for some y ≥ 0 and aI ∈ RN. Let
y∗j = yj if the constraint j is active at x∗ and y∗j = 0 otherwise. Since y∗ ≥ 0 and
aI = BT (x∗) y∗, y∗ is a feasible solution of the dual problem. By Complementary
Slackness, x∗ is an optimal solution of the primal problem maxBx≤c

〈
aI , x

〉
, which

implies that type I is linear, and therefore possible, at x∗.

Theorem 6

In this proof for clarity we will omit to denote the dependence of B̄ on x∗. Suppose
that

(
aI , I

)
is possible at x∗. Let ej be a vector in RN such that ej

i = −1 for i = j and
ej

i = 0 otherwise, and let dj = B̄−1ej. Then for x(λ) = x∗ + λdj, λ > 0, we have

B̄x = B̄x∗ + λB̄dj = c̄ + λej ≤ c̄.

Thus, the N constraints that are active at x∗, B̄x∗ = c̄, will remain satisfied at x(λ)
for any λ > 0. Hence, there exists λ0 > 0 such that x(λ0) ∈ X. Since type I is
possible at x∗, we have

〈
aI , x(λ0)

〉
≤
〈

aI , x∗
〉

which implies
〈

aI , dj〉 ≤ 0. Thus,

〈
aI ,−dj

〉
=

N

∑
i=1

aiB̄−1
ij ≥ 0,

which implies condition (2).
Conversely, suppose that

(
aI , I

)
is not possible at x∗. Then there exists an adja-

cent vertex xj ∈ X such that
〈

aI , xj〉 > 〈
aI , x∗

〉
. Note that B̄xj = c̄′, where c̄′i < c̄i

for i = j and c̄′i = c̄i otherwise. Let dj = 1
λ

(
xj − x∗

)
for λ = c̄i − c̄′i > 0. Then
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xj = x∗ + λdj implies
〈

aI , dj〉 > 0. On the other hand,

B̄dj =
1
λ

(
B̄xj − B̄x∗

)
=

1
λ

(
c̄′ − c̄

)
= ej,

which implies dj = B̄−1ej. Hence,

〈
aI ,−dj

〉
=

N

∑
i=1

aiB̄−1
ij < 0,

which implies that condition (2) is violated.

Corollary 5

If column i has a positive and a negative entry, then same is true for the vector
D (x∗) a{i}. Hence, type {i} is not possible by condition (2). Conversely, suppose
that every column of D (x∗) has only entries of one sign or zero. Then, by choosing
appropriately the sign of aI

i for each column i, we can satisfy condition (2) for any
type I, which means that all types are possible.

Corollary 6

Obviously, we can always find y with positive coordinates such that

(D−1 (x∗) y)i ̸= 0

for all i = 1, . . . , N. Hence, we have D (x∗) aF = y > 0 for aF = D−1 (x∗) y, so that
the full type F is possible.

Proposition 2

Obviously, a type that is possible at x∗ is linear in this case as well. Then
(
aI , I

)
is

possible if and only if for any x ∈ X, we have
〈

aI , x∗
〉
≥
〈

aI , x
〉
, which is equivalent

to
〈

aI , x∗ − x
〉
≥ 0, from which condition (3) follows.
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Theorem 7

“only if”: Suppose there is an orthant K such that
⋃

t F
(
xt) ⊆ K. We can show

using the construction in the first part of the proof of Theorem 2 that for any type
I there exists e such that (e, I) is possible at all t. Hence, the type is not identified.

“if”: Suppose there is no orthant K such that
⋃

t F
(
xt) ⊆ K. Then, there exist

v, w ∈ ⋃
t F
(
xt) such that vi > 0 and wi < 0 for some i ∈ {1, . . . , N}. Clearly,

v ∈ F
(
xt) and w ∈ F (xs) for some t, s ∈ T (possibly with t = s). Hence, (e, {i})

is possible at both
(
Xt, xt) and (Xs, xs) only if e(i) = −1 (follows from vi > 0) and

e(i) = 1 (follows from wi < 0), a contradiction. Therefore, type {i} is not possible
at O and the type is partially identified.

Theorem 8

For sufficiency, the same argument of the proof of Theorem 3 can be used here with
obvious adaptations, replacing (X, x∗) with a suitable element of the collection O.

For the necessity proof, note that the intersection of the normal cones,
⋂

t NXt(xt),
must satisfy the first condition of Lemma 4: otherwise, multiple linear types would
be possible at O. Using this fact, we see that the proof of Lemma 5 remains
valid with TX(x∗) replaced by conv

(⋃
t TXt(xt)

)
. Indeed, the only non-trivial step

(needed for the third paragraph of the proof of Lemma 5) is to show that

(⋂
t

NXt(xt)

)0

= conv

(⋃
t

TXt(xt)

)
, (9)

To prove (9), note that, by the Polar Cone Theorem (Bertsekas [6], p. 100), we have

(
C0
)0

= cl (conv (C))

for any nonempty cone C. By applying this equation to C =
⋃

t TXt(xt), we get

(⋃
t

TXt(xt)

)0
0

= cl

(
conv

(⋃
t

TXt(xt)

))
. (10)

Clearly, the convex hull of a finite union of closed convex cones is closed, so we
can omit the closure operator. Using the fact that the normal cone is the polar cone
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of the tangent cone, it is straightforward to check that

(⋃
t

TXt(xt)

)0

=
⋂

t
NXt(xt).

By combining this with (10), we get the desired result (9). Therefore, the first con-
dition of Lemma 5 holds with TX(x∗) replaced by conv

(⋃
t TXt(xt)

)
. For the rest

of the proof, we can use the same argument as in the final part of the proof of
Theorem 3, replacing (X, x∗) with a suitable element of the collection O.

Appendix B. Convex analysis

For the reader’s convenience we gather here some standard facts and terminology
used in the text. The affine hull a f f (S) (resp., convex hull) of a set S ∈ RN is the
smallest affine (resp., convex) set containing S, namely

a f f (S) =

{
k

∑
i=1

αixi | k > 0, xi ∈ S, αi ∈ R,
k

∑
i=1

αi = 1

}
,

conv (S) =

{
k

∑
i=1

αixi | k > 0, xi ∈ S, αi ≥ 0,
k

∑
i=1

αi = 1

}
.

The dimension dim S of a set S is the dimension of its affine hull. The relative interior
ri S of a set S is the interior which results when S is regarded as a subset of its affine
hull. For a convex set S in RN, x ∈ S belongs to ri S iff for all y ∈ S there exists
λ > 1 such that λx + (1 − λ) y ∈ S. The face E of a convex set S is a nonempty
convex subset of S such that: if x ∈ E and x = αy + (1 − α) z for some y, z ∈ S and
α ∈ (0, 1), then y, z ∈ E (i.e. no element of the face can be obtained as a convex
combination of elements outside the face). A zero–dimensional face is an extreme
point. That is, x ∈ S is extreme if there exists no y, z ∈ S \ {x} and α ∈ (0, 1) such
that x = αy + (1 − α) z. A face E of S is exposed if there is a w ∈ RN such that
E = arg maxx∈S ⟨w, x⟩; if so we say that w exposes E. In particular, a point x ∈ S is
exposed if x = arg maxx∈S ⟨w, x⟩ for some w ∈ RN.

A cone is a set C such that if x ∈ C and α ≥ 0 then αx ∈ C. The cone of feasible
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directions of a set S at x ∈ S is defined as

FS (x) = {α (y − x) | y ∈ S, α ≥ 0} .

This is the set of all directions in which it is possible to move away from x while
remaining locally within the set S. From an economic perspective, the feasible
directions tell us the feasible trade-offs between features.25 The tangent cone at
x ∈ S is defined as TS (x) = cl FS (x), where cl denotes the closure operator.26 The
tangent cone is a useful tool to describe the structure of a set S by means of the
feasible directions and their limits. The normal cone of S at x ∈ S is defined as

NS (x) =
{

z ∈ RN| ⟨z, y − x⟩ ≤ 0, ∀y ∈ S
}

.

Intuitively, the normal cone at the point x ∈ S is the set of all vectors that make
an acute angle with no vector from x to some point y in the feasible set. When
S ⊆ RN is a compact, convex set and a ∈ RN, the following fact holds:

Fact 1. x∗ ∈ arg maxx∈S ⟨a, x⟩ if and only if a ∈ NS(x∗).

The polar cone S0 of S is defined as

S0 =
{

y ∈ RN| ⟨y, x⟩ ≤ 0, ∀x ∈ S
}

and its negative −S0, which comprises all vectors that form non-obtuse angles
with any vector in S, is called the dual cone. When S is convex, the normal and the
tangent cones at x are polar to each other.

A convex polytope is a set S = conv
(
x1, ..., xN) where the xi are the vertices.27 A

polyhedron is a set S = {x ∈ RN | Bx ≤ c} where B is an m × N-matrix and c is
a vector in Rm, with m finite. A polyhedron S is bounded if there is some k > 0
such that ||x|| ≤ k for all x ∈ S, where || · || denotes the Euclidean norm. A set is a
bounded polyhedron if and only if it is a convex polytope.

25A more general definition of the cone of feasible directions is FS (x) ={
y ∈ RN | ∃ε > 0 such that x + εy ∈ S

}
, but the two definitions coincide given that S is con-

vex.
26See e.g. Rockafellar and Wets [19], Thm 6.9, for a proof that for convex sets more general

definitions of the tangent cone reduce to this one.
27When S =

(
x1, ..., xN) we denote conv (S) as conv

(
x1, ..., xN).
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The polar set of a set S is S∗ =
{

y ∈ RN|⟨y, x⟩ ≤ 1 ∀x ∈ S
}

. If S is a closed
convex set such that 0 ∈ S, then (S∗)∗ = S. If S is a convex polytope and 0 ∈ int S
then S∗ is also a convex polytope and 0 ∈ int S∗.
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